SAT matematikos 2 lygio dalyko testas pateikia iššūkį toms pačioms sritims, kaip ir 1 matematikos lygio dalyko testas, pridedant sudėtingesnę trigonometriją ir prieškalkulį. Jei esate roko žvaigždė, kai kalbama apie visus dalykus, matematika, tai jums yra išbandymas. Jis sukurtas tam, kad parodytų jums geriausias galimybes tiems priėmimo konsultantams. SAT matematika 2 lygio testas yra vienas iš daugelio SAT dalyko testai pasiūlė Kolegijos valdyba. Šie šuniukai yra ne tas pats, kas senas geras SAT.
SAT matematikos 2 lygio dalyko testo pagrindai
Kai užsiregistruosite į šį blogą berniuką, turėsite žinoti, su kuo susidūrėte. Čia yra pagrindai:
- 60 minučių
- 50 klausimai su atsakymų variantais
- Galima nuo 200 iki 800 taškų
- Egzamino metu galite naudoti grafiką arba mokslinę skaičiuoklę, kaip ir naudodami 1 matematikos lygis Dalyko testas - neprivalote išvalyti atminties prieš pradedant ją naudoti, jei norite pridėti formules. Neleidžiama naudoti mobiliojo telefono, planšetinio kompiuterio ar kompiuterio skaičiuotuvo.
SAT matematikos 2 lygio dalyko testo turinys
Skaičiai ir operacijos
- Operacijos, santykis ir proporcija, sudėtingieji skaičiai, skaičiavimas, elementarioji skaičių teorija, matricos, sekos, eilės, vektoriai: Maždaug nuo 5 iki 7 klausimų
Algebra ir funkcijos
- Išraiškos, lygtys, nelygybės, atvaizdavimas ir modeliavimas, funkcijų savybės (tiesinė, polinominė, racionalioji, eksponentinis, logaritminis, trigonometrinis, atvirkštinis trigonometrinis, periodinis, gabalinis, rekursinis, parametrinis): apytiksliai nuo 19 iki 21 klausimai
Geometrija ir matavimas
- Koordinuoti (linijos, parabolės, apskritimai, elipsės, hiperbolės, simetrija, transformacijos, polinės koordinatės): Maždaug nuo 5 iki 7 klausimų
- Trimatis (kietosios dalelės, cilindrų, kūgių, piramidžių, rutulių ir prizmių paviršiaus plotas ir tūris kartu su trijų matmenų koordinatėmis): Maždaug nuo 2 iki 3 klausimų
- Trigonometrija: (dešinieji trikampiai, tapatumai, spindulio matas, kosinusų dėsnis, sinusų dėsniai, lygtys, dvigubo kampo formulės): Maždaug nuo 6 iki 8 klausimų
Duomenų analizė, statistika ir tikimybė
- Vidutinis, mediana, režimas, intervalas, tarpkvartalinis diapazonas, standartinis nuokrypis, grafikai ir grafikai, mažiausiųjų kvadratų regresija (tiesinė, kvadratinė, eksponentinė), tikimybė: Maždaug nuo 4 iki 6 klausimų
Kodėl verta laikyti SAT matematikos 2 lygio dalyko testą?
Šis testas skirtas toms iš jūsų spindinčioms žvaigždėms, kurioms matematika yra gana lengva. Tai tinka ir tiems, kurie vadovauja matematikai, tokioms kaip ekonomika, finansai, verslas, inžinerija, informatika ir kt. ir paprastai tie du žmonių tipai yra tas pats. Jei jūsų būsima karjera priklauso nuo matematikos ir skaičių, tuomet norėsite parodyti savo talentus, ypač jei bandote patekti į konkurencingą mokyklą. Kai kuriais atvejais turėsite atlikti šį testą, jei esate mokęsi matematikos srityje, todėl būkite pasirengę!
Kaip pasiruošti SAT matematikos 2 lygio dalyko testui
Kolegijos valdyba rekomenduoja daugiau nei trejus metus ruošti kolegijos matematiką, įskaitant dvejas metų algebra, vieneri geometrijos metai ir elementariosios funkcijos (precalculus) arba trigonometrija arba tiek. Kitaip tariant, jie rekomenduoja jums mokytis matematikos vidurinėje mokykloje. Testas tikrai sunkus, tačiau tikrai yra ledkalnio viršūnė, jei einate į vieną iš tų laukų. Norėdami pasiruošti patys, įsitikinkite, kad paėmėte ir įvertinote aukščiau esančius kursus savo klasės viršuje.
Pavyzdinis SAT matematikos 2 lygio klausimas
Kalbant apie Kolegijos valdybą, šis ir kiti panašūs klausimai yra prieinami Laisvas. Jie taip pat pateikia išsamų paaiškinimą kiekvienas atsakymas. Beje, klausimai yra išdėstyti pagal sunkumus pagal jų klausimų brošiūras nuo 1 iki 5, kur 1 yra sunkiausias, o 5 yra didžiausias. Žemiau pateiktas klausimas pažymėtas kaip 4 sunkumo lygis.
Kai kuriems tikriesiems skaičiams t, pirmieji trys aritmetinės sekos terminai yra 2t, 5t - 1 ir 6t + 2. Kokia ketvirtosios kadencijos skaitinė vertė?
- (A) 4
- (B) 8
- (C) 10
- (D) 16
- (E) 19
Atsakymas: (E) pasirinkimas yra teisingas. Norėdami nustatyti skaitinę ketvirtojo termino vertę, pirmiausia nustatykite t vertę, tada taikykite bendrąjį skirtumą. Kadangi 2t, 5t - 1 ir 6t + 2 yra pirmieji trys aritmetinės sekos terminai, turi būti tiesa, kad (6t + 2) - (5t - 1) = (5t - 1) - 2t, tai yra, t + 3 = 3t - 1. Sprendžiant t + 3 = 3t - 1, kai t gaunama t = 2. Pakeitę 2 t reikšme iš trijų pirmųjų sekos išraiškų, pamatysite, kad jie yra atitinkamai 4, 9 ir 14. Bendras šios aritmetinės sekos iš eilės dėmenų skirtumas yra 5 = 14 - 9 = 9 - 4, todėl ketvirtasis terminas yra 14 + 5 = 19.